Minimizing Polarization and Disagreement Using Topic-Based Timeline Algorithms

Tianyi Zhou, Stefan Neumann, Kiran Garimella, Aristides Gionis

Background: Online media polarization

US political spectrum on the eve of the 2016 election.

^{*} By John Kelly and Camille François, MIT Technology Review, 2018

Background: Online media polarization

This figure highlights the followers of an American woman called Jenna Abrams, a following gained with her viral tweets about slavery, segregation, Donald Trump, and Kim Kardashian. Her far-right views endeared her to conservatives, and her entertaining shock tactics won her attention from several mainstream media outlets.

^{*} By John Kelly and Camille François, MIT Technology Review, 2018

Online media users show diverse interests

 Users interests from online tool "Who likes What".

^{*} Who likes what: https://twitter-app.mpi-sws.org/who-likes-what

Interests similarity and political preference

• Recent research shows that users with similar interests are more likely to assimilate their political views. [1]

Incidental Similarity

^{*} Incidental similarity: similarity on a number of demographic and biographical features, such as age, gender, hometown, university, sports teams, personal interests, and idiosyncratic quirks.

^[1] Balietti, Stefano, et al. "Reducing opinion polarization: Effects of exposure to similar people with differing political views." Proceedings of the National Academy of Sciences 118.52 (2021): e2112552118.

Interests similarity and political preference

- Recent research shows that users with similar interests are more likely to assimilate their political views. [1]
- Fostering consensus: encouraging cross-cutting political communication based on nonpolitical commonalities.

Incidental Similarity

^{*} Incidental similarity: similarity on a number of demographic and biographical features, such as age, gender, hometown, university, sports teams, personal interests, and idiosyncratic quirks.

^[1] Balietti, Stefano, et al. "Reducing opinion polarization: Effects of exposure to similar people with differing political views." Proceedings of the National Academy of Sciences 118.52 (2021): e2112552118.

Interests similarity and political preference

- Recent research shows that users with similar interests are more likely to assimilate their political views. [1]
- Fostering consensus: encouraging cross-cutting political communication based on nonpolitical commonalities.

Incidental Similarity

^{*} Incidental similarity: similarity on a number of demographic and biographical features, such as age, gender, hometown, university, sports teams, personal interests, and idiosyncratic quirks.

^[1] Balietti, Stefano, et al. "Reducing opinion polarization: Effects of exposure to similar people with differing political views." Proceedings of the National Academy of Sciences 118.52 (2021): e2112552118.

- Users form a social network:
 - Nodes represent users
 - Edges represent following relations or interactions
 - Meta information
 - innate opinion on politics
 - personal interests (sports, music, etc)

- Users form a social network:
 - Nodes represent users
 - Edges represent following relations or interactions
 - Meta information
 - innate opinion on politics
 - personal interests (sports, music, etc)
- We measure polarization and disagreement in the social network:
 - Polarization: variance of opinions
 - Disagreement: tension along edges in the network

- Users form a social network:
 - Nodes represent users
 - Edges represent following relations or interactions
 - Meta information
 - innate opinion on politics
 - personal interests (sports, music, etc)
- We measure polarization and disagreement in the social network:
 - Polarization: variance of opinions
 - Disagreement: tension along edges in the network
- Goal: minimizing polarization and disagreement in the network

We make recommendations relevant to user interests

- Users form a social network:
 - Nodes represent users
 - Edges represent following relations or interactions
 - Meta information
 - innate opinion on politics
 - personal interests (sports, music, etc)
- We measure polarization and disagreement in the social network:
 - Polarization: variance of opinions
 - Disagreement: tension along edges in the network
- Goal: minimizing polarization and disagreement in the network

We use information about user topical interests, and the influencers on these topics

User-to-topic matrix, X

	Sports	Music	•••	Politic
Tom	0.7	0.2		0.1
Alice	0.2	0.5		0.2
John	0.3	0.2		0.4

Topic-to-influencer matrix, Y

	Tom	Alice	•••	John
Sport	0	0.08		0
Music	0.05	0.01		0.02
•••				
Politic	0.02	0.04		0.03

We use information about user topical interests, and the influencers on these topics

User-to-topic matrix, X

	Sports	Music		Politic
Tom	0.7	0.2		0.1
Alice	0.2	0.5		0.2
		•••	•••	• • •
John	0.3	0.2		0.4

Topic-to-influencer matrix, Y

	Tom	Alice	•••	John	
		0.00		0	
Sport	0	0.08		U	
Music	0.05	0.01		0.02	
•••					
Politic	0.02	0.04		0.03	

User interests sum to 1

Influencer scores on a topic sum to1

We use information about user topical interests, and the influencers on these topics

User-to-topic matrix, X

	Sports	Music	•••	Politic
Tom	0.7	0.2		0.1
Alice	0.2	0.5		0.2
•••				
John	0.3	0.2		0.4

Topic-to-influencer matrix, Y

	Tom	Alice	•••	John
Sport	0	0.08	•	0
Music	0.05	0.01		0.02
•••				
Politic	0.02	0.04		0.03

- Nodes represent users
- Edges represent recommendations based on interests

Interests of ¥UNG TRILLIONAIRE\$ #Jerry || Benjamin || Jay_Spanky: ¥UNG TRILLIONAIRE\$ #Jerry || Benjamin || Aim for Respect Rather than being liked || \$\sigma \cop \text{put God first #love Jesus like anything you love most #teamnigeria #GreenuchiteandGreen #moremoney} All General Niche healthcare celebrities business worldinformation info life healthcelebs naija artists best media music policy tech medica stars nollywood news public health politics entertainment

User-to-topic matrix, X

	Sports	Music	•••	Politic
Tom	0.7	0.2		0.1
Alice	0.2	0.5		0.2
•••				
John	0.3	0.2		0.4

	Tom	Alice	•••	John
Sport	0	80.0		0
Music	0.05	0.01		0.02
•••				
Politic	0.02	0.04		0.03

- Social network with interest recommendation, A+M
- Same nodes and denser edges.

based on user interests, M

User-to-topic matrix, X

	Sports	Music	•••	Politic
Tom	0.7	0.2		0.1
Alice	0.2	0.5		0.2
•••				
John	0.3	0.2		0.4

Topic-to-influencer matrix, Y

	Tom	Alice	•••	John
Sport	0	80.0		0
Music	0.05	0.01		0.02
•••				
Politic	0.02	0.04		0.03

Given a budget, how could we redistribute row values to find the optimal solution X^* that gives the lowest polarization and disagreement?

- Social network with interest recommendation, A+M
- Same nodes and denser edges.

healthcare

Optimal user-to-topic matrix, X^*

	Sports	Music	•••	Politic
Tom	0.6	0.3		0.1
 Alice	0.2	0.7		0.1
•••				
John	0.3	0.2		0.5

Topic-to-influencer matrix, Y

	Tom	Alice	•••	John
Sport	0	80.0		0
Music	0.05	0.01	•••	0.02
•••				
Politic	0.02	0.04		0.03

We present a gradient descent-based algorithm for this problem, and show that under realistic parameter settings it computes a

 $(1+\epsilon)$ -approximate solution in time $\tilde{O}(m\sqrt{n}\log 1/\epsilon)$ where m is the number of edges in the graph and n is the number of vertices.

- Social network with interest recommendation, A+M
- Same nodes and denser edges.

based on user interests, M

Experimental results

Reduction of the polarization and disagreement index on two Twitter dataset for our algorithm GDPM and two baseline algorithms.

Dataset

• Innate opinion of users

Political polarity score

• Twitter dataset

- A list of Twitter accounts who actively engage in political discussions in the US.
- For these accounts, we obtain a list of followers for each and corresponding tweets using Twitter API.
- TwitterSmall: 5,000 seed users.
- TwitterLarge: 50,000 seed users.

• Ethical issues of dataset

- We anonymize ID and names for each Twitter account.
- Interest and influence of users are represented in matrix without personal information.
- We only report aggregated statistical metrics.

Ethical Considerations

• Intended usage:

- Our goal is encouraging cross-cutting political communication based on nonpolitical commonalities, like interests in sports and music.
- Using small budget to change users interest-based feeds is considered a milder intervention which respects users preference.

Abuse

- By manipulating budget parameter and topics, the algorithm may be used to guide user to an intended direction in a long term process.
- Social media platforms can anyway make changes to user timeline with no transparency and with the aim to optimize objectives of their interest, e.g., engagement.
- Deploying the algorithm in real-world setting may led to unexpected effects.

Thanks D